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There exist classical systems whose canonical quantization yields relativistic wave
equations. As a constructive proof, the classical mechanics of a translating-rotating five-
frame is considered. Its quantization yields the Dirac, Weyl, Klein-Gordon, Maxwell-
Proca, and higher spin equations, together with a rotational mass spectrum for the states
predicted.
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1. INTRODUCTION

In physical theory, one seeks to explain the complexity and diversity of
things in terms of the lawful organization of a few kinds of units. These units are
endowed with the least structure compatible with their perceived existence. Thus
it was natural that the electron was regarded for some time after its discovery
as a massive charged point in a three-dimensional manifold. The first indication
of greater structure came from spectroscopic evidence, and led Uhlenbeck and
Goudsmit (1926) to suggest that a spin is associated with the former geometrical
point. Shortly thereafter, Pauli (1927) formulated a quantum theory of spinning
particles, utilizing the spin 1/2 representation of the three-dimensional rotation
group to account for the observed quantization of the spin.

The chief deficiency of Pauli’s theory was its nonrelativistic nature, and this
was remedied in the epochal discovery of Dirac (1928). His equation, which may
be written

(γ µ ∂µ + m)ψ = 0
(1)

[γ µ, γ ν]+ = −2gµν

1 Based on the Ph.D. Thesis of Albert Murad Sutton (1932–1979), Physics Department, Belfer Gra-
duate School of Science, Yeshiva University, 1967.
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found immediate confirmation in the fine structure of hydrogen, and later in the
successes of quantum electrodynamics. Its position today is an ambivalent one.
While exhaustively understood from many mathematical and physical points of
view (Corson, 1953; Rose, 1961; Schweber, 1961), it is not well understood
kinematically. The reason is that Eq. (1) stands as a system of partial differential
equations, the particle nature being only inferred, via the construction of tensors
commonly associated at the quantum level with particles. In addition, there are
grave conceptual difficulties, like zitterbewegung, unbounded negative energy
spectrum, etc., connected with the anomalous behavior of the inferred particle.

The situation has led many people (Grossman and Peres, 1963) to construct
classical models bearing a more or less close relationship to Dirac’s equation, but
these attempts have met only partial success. Moreover, classical systems lead
almost invariably to second order equations, while Dirac’s is a first order equation
with an essential dependence on anti-commutation relations, a concept with no
ready classical analogue. These facts have led most to believe that the electron
is an intrinsically quantum mechanical system, admitting no classical mechanical
description.

It has been suggested (Finkelstein, 1955) that Dirac’s equation does indeed
result from the quantization of some underlying classical system, but that it rep-
resents only a direct summand in the ensuing scheme, the remaining summands
describing states of higher and lower spin, flowing equally naturally from the
underlying theory and obeying other irreducible equations. Nevertheless, Dirac’s
equation may be expected to bear a closer resemblance to the underlying theory
than these others. This is by analogy with the theory of group representations,
where it is known that the spinor representations are the fundamental ones.

“Classical system” and “quantization” are meant in the most literal and
conservative sense; namely, that exemplified by the first system to suffer modern
quantization, Schrödinger’s hydrogen atom. One must start with a well-defined
configuration space and impose on it a Lagrangian. From this is derived the
infinitesimal generator of the motion. One passes next to the quantization of
the system by making the usual operator replacements, leading to a dynamical
equation and the associated apparatus of the quantum theory. One may wish, in
addition, that the theory be invariant under some group. For this it suffices that the
Lagrangian be invariant; in the Hamiltonian formulation, it is necessary that the
Lie algebra of the invariance group, realized in terms of canonical variables, be
included among the constants of the motion.

In attempting to find such a system, two features of Dirac’s theory have
seemed salient. First, it is clear that in some sense one is dealing with a spinning
object whose translational motion is coupled to its spin. Second, it has long
been known [(Klein, 1936; Bhabha, 1945) More generally in n dimensions, the n

Clifford numbers, and their (n2) commutators, span the Lie algebra of a pseudo-
orthogonal group in n + 1 dimensions.] that the four Dirac matrices γ ′

µ ≡ 1
2 γµ
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generate under repeated commutation of the Lie algebra o(3, 2; R) of the group
O(3, 2; R):

[γ ′
µ, γ ′

ν] ≡ γ ′
µν (2a)

[γ ′
µν, γ

′
σ ] = gµσ γ ′

ν − gνσ γ ′
µ (2b)

[γ ′
µν, γ

′
στ ] = gµσ γ ′

ντ + gντ γ ′
µσ − gµτ γ ′

νσ − gνσ γ ′
µτ (2c)

Equation (2c) states that the γ ′
µν generate the Lie algebra, hlg, of the homoge-

neous Lorentz group, HLG. Equations (2b) and (2c) state that hlg is reductive in
o(3, 2; R).

Defining γ ′
5µ ≡ γ ′

u ≡ −γ ′
µ5, Eqs. (2b) and (2c) may be combined into the

single equation

[γ ′
ab, γ

′
cd ] = gac γ ′

bd + gbd γ ′
ac − gad γ ′

bc − gbc γ ′
ad . (3)

Here µ, ν = 0, 1, 2, 3; gµν = diag(1,−1,−1,−1); a, b = 5, 0, 1, 2, 3; gab =
diag (1, 1, −1, −1, −1). 0(3, 2; R), also known as the 3 + 2 de Sitter group, is
the 10-parameter group of real 5 × 5 matrices leaving invariant the form gab xa xb.
In Cartan’s complex classification this group is related to the locally isomorphic
groups B2 and C2.

2. CLASSICAL THEORY

2.1. Configuration Space and Covariance

The configuration space is the principle fiber bundle (Chern, 1966; Nomizu,
1956; Steenrod, 1951) whose base is Minkowski space-time and whose fiber is
0(3, 2; R) conceived of as a frame manifold. The dynamical invariance group is
the inhomogeneous Lorentz group, ILG.

The physical meaning may be clarified by reference to the ordinary top, whose
internal configuration space is the manifold of 0(3; R). Points of this manifold
correspond to orthonormal frames, representing pure orientations. Similarly, a
point of 0(3, 2; R) in general corresponds to a distended frame, so the fiber may
be thought of as the manifold of possible orientation-deformations contemplated
by the theory.3

We wish to do classical mechanics in this space; i.e., consider maps of the
real line into the bundle, generated by Euler-Lagrange or Hamiltonian equations.
One wishes these maps to assemble themselves into equivalence classes, within
each of which a realization of the dynamical invariance group acts transitively.
This is the requirement of covariance. As stated, the present theory is built on ILG.

3 The notion of manifolds of kinematic or geometric objects is chiefly due to Plücker, who, embittered
by neglect, left geometry for twenty years to become a founder of experimental spectroscopy.
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Covariance may be secured by establishing an action of ILG on the bundle
and later choosing an invariant Lagrangian. It is assumed that ILG acts on space-
time in the usual manner; e.g., Xµ is a 4-vector transforming under ILG, while
ẋµ ≡ dxµ

dσ
(σ being an arbitrary invariant path parameter) transforms under the

homogeneous Lorentz group, HLG. We must impress an action of ILG on the
fiber. We postulate that translations have no effect, so it remains to realize HLG
on the fiber. To this end, consider the commutation relations. Equations (2b) and
(2c) state, as noted above, that HLG is a reductive subgroup of 0(3, 2; R). These
equations may now be read in the following way. Let A ∈ hlg, B ∈ o(3, 2; R).
Then [A,B] gives the change in the tangent vector B induced by the infinitesimal
inner automorphism generated by A. Thus Eq. (2b) says that four of the generators
of o(3, 2; R) transform among themselves as a 4-vector, the remaining generators,
by Eq. (2c) transforming among themselves as a bivector. Hence HLG is realized
as an adjoint group of o(3, 2; R), and as a group of inner automorphisms of
O(3, 2; R).

2.2. The Spinning Object

Consider next a rotating 5-frame. With respect to a fiducial system of five
axes (a tetrad of vectors tangent to the space-time coordinates, a fifth in the nor-
mal direction), the frame is specified by a 5 × 5 matrix f . (Changing the fiducial
axes changes f by inner automorphism.) The matrix elements of f are functions
of ten Euler angles qab on the manifold O(3, 2; R). The motion of f is deter-
mined by a path of this manifold; i.e., qab = qab(σ ), σ an arbitrary invariant path
parameter.

As in the theory of the ordinary top, it is natural to consider the Darboux-
Cartan matrix �(q, q̇) = ḟ f −1, which lies in the dual to the Lie algebra. Denote
the matrix elements of � by �a

b(q, q̇) = wa
bcd (q) q̇cd . The functions wa

bcd (q) are
associated with the 1-forms wab

cd (q) dqcd , and these with their duals, the vector
fields of left translation Lab = wcd

ab(q) rcd . The symbol w denotes the inverse-
transpose of the matrix w, and rcd ≡ ∂

∂qcd . These vector fields constitute the Lie
algebra of O(3, 2; R) acting on its own manifold as a group of motions, hence
[Lab, Lcd ] = C

ef

abcd Lef , where C is the structure tensor of o(3, 2; R). But this
must be equivalent to Eq. (3). Hence we may regard the Dirac matrices γ ′

ab as
4-dimensional representations of the infinite-dimensional operators Lab.

2.3. The Action

For the action we take

S =
∫

dσ m0c
(
ẋµ ẋµ + αR ẋµ w5µ ab q̇ab + βR2wµνab w

µν

cd q̇ab q̇cd
)1/2

. (4)
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The purpose of the square root is to render the Lagrangian homogeneous of
degree one, so that the equations of motion are sensitive to reparametrization. R

is a quantity of the dimension of a length, which plays the role of a radius of
gyration. The symbols α and β are dimensionless coupling constants. The first
term in the Lagrangian pertains to translational motion in space-time, the last
term to rotational motion in the fiber, and the middle term to translation-rotation
coupling. For simplicity we have assumed an inertia tensor that is isotropic in four
dimensions and independent of the angular velocities. If R is set equal to zero we
recover the Lagrangian for a structureless, free relativistic particle of mass m0. It
may be anticipated that R may be written as a dimensionless constant times the
Compton wavelength h/m0c, so that R → 0 is achieved by h → 0. In this sense,
the spin of this classical particle owes its existence to the finite value of Planck’s
constant.

2.4. Hamiltonian Formulation

While the Euler-Lagrange equations derived from the action are sufficient for
many purposes, it is useful in the classical theory, and necessary for conventional
quantum theory, to display the motion as the evolution of a contact transformation.
This is accomplished by the Hamiltonian formalism.

The canonical momenta are

pµ ≡ ∂L
∂ ẋµ

= (m0c)2

2L (2ẋµ + α Rw5µ ab q̇ab) (5a)

rcd ≡ ∂L
∂ q̇cd

= (m0c)2

2L
(
α R ẋµ w5µ cd + 2β R2 wµνab w

µν

cd q̇ab
)
. (5b)

Multiplying this last equation by w yields

L5µ ≡ wab
5µ rab = (m0c)2

2L α R ẋµ (6a)

Lµν ≡ wab
µν rab = (m0c)2

L β R2 wµνab q̇ab. (6b)

The canonical momenta are not all independent since we have the constraint

Lµ pµ − Lµ Lµ

α R
+ α

4β R
Lµν Lµν = α R

4
(m0c)2

where we have written, for simplicity, Lµ for L5µ. If we take β = −α2

4 , the
constraint assumes the simple form

I ≡ Lµ pµ − Lab Lab

αR
− αR

4
(m0c)2 = 0
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involving the Casimir operator Lab Lab. It is now no loss of generality to take
α = 2. With these specializations,

I = Lµ pµ − Lab Lab

2R
− R

2
(m0c)2 (7)

and the Lagrangian of the theory is

L = m0c
(
ẋµ ẋµ + 2R ẋµ w5µab q̇ab − R2 wµνab w

µν

cd q̇ab q̇cd
)1/2

(8)

in which the subtractive contribution of the rotational form is nominal, since this
form is indefinite.

By Hamilton’s principle the equations of motion are obtained by extremaliz-
ing the action

S =
∫

dσ (pµ ẋµ + rab q̇ab − H − λ I )

where now free variations of both the coordinates and momenta are contemplated,
subject only to the limitation implied by the constraint. This limitation is achieved
by picking up the constraint with a Lagrange multiplier λ. Since the Lagrangian
was homogeneous of degree one, the Hamiltonian H vanishes identically, with the
consequence that the motion is generated solely by the constraint I [The procedure
being followed is clearly explained in Lanczos (1949)].

The variation then yields the equations of motion

ẋµ = λ
∂I

∂pµ

ṗµ = −λ
∂I

∂xµ

(9)

q̇ab = λ
∂I

∂rab

ṙab = −λ
∂I

∂qab

and I = 0.

We may now choose a path parameter σ ′ so that λ(σ ′) = 1/m0c identically, and the
dot in these equations now denotes differentiation with respect to σ ′. By Eq. (6a),
the Lagrangian is identically equal to Rm0c, having the dimension of action.

Defining I ′ ≡ I/m0c, we may introduce Poisson brackets in the usual man-
ner, so that the σ ′ rate of change of any dynamical quantity Y may be written as
Ẏ = −[I ′, Y ]P.B..

The description of the motion may be referred to quantities z other than σ ′

by means of the formula

dY

dz
= dY/dσ ′

dz/dσ ′ = [I ′, Y ]P.B.

[I ′, z]P.B.

. (10)
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We may do this for the coordinates xµ in particular, with the result that the
generators of space-time translation are given by

d

dxµ
= [I ′, ]P.B.

[I ′, xµ]P.B.

= −L+1
µ [I, ]P.B.

= −[
L−1

µ I,
]
P.B.

≡ ad
(−L−1

µ , I
)
, (11)

since I = 0. On quantization, these pass over to the Heisenberg equations of
motion.

2.5. Motion of a Free Particle

We study the projection of the motion onto the base space. Evaluating Poisson
brackets,

ṗµ = 0, so pµ = const. (12a)

ẋµ = Lµ

m0c
(12b)

L̇µ = −pα Lαµ

m0c
(12c)

L̇α µ = p[α Lµ]

m0c
(12d)

Combining the last two equations yields

L̈µ + p2 �µ
α Lα = 0

(13)

pµ ≡ pµ

m0c
, �µ

α ≡
(

∂µ
α − pµ pα

p2

)

The quantity �µ
α is a projection operator, which acts on a vector by annihilating

its component along pµ, leaving untouched its transverse part. Equation (13)
then states that the transverse part of Lµ whirls around pµ at a frequency p ≡
(pα pα)1/2. Integrating,

Lµ(σ ′) = pµ

(
pα Lα(0)

p2

)
+ cos p σ ′ �µ

α Lα(0) + sin p σ ′ �
µ
α L̇α(0)

p

= pµ

(
pα Lα(0)

p2

)
+

⎡
⎣(

�µ
α Lα(0)

)2 +
(

�µ
α pβ Lβ α(0)

p

)2
⎤
⎦

1/2

× cos
(
p σ ′ + ϕµ

)

ϕµ ≡ tan−1

(
�µ

α pβ Lβ α(0)

p �
µ
α La(0)

)
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where we have used the relation L̇α(0) = −pβ Lβ α(0) from Eq. (12c), and the
fact that pα pβ Lα β(0) = 0, since Lαβ is skew in its indices.

It is desirable to replace the initial values with the constants of the motion to
which they are equal. One notes that d

dσ ′ (m0c
xα pα

Lα pα
) = 1, so σ ′ = m0c

xα pα

Lα pα
, up

to an additive constant. Defining θ ≡ p m0c
xα pα

Lα pα
, one checks that

Bµ ≡ �µ
α

(
−sin θ Lα + cos θ

pβ Lβ α

p

)
(14a)

Cµ ≡ �µ
α

(
cos θ Lα + sin θ

pβ Lβ α

p

)
(14b)

are constants of the motion. Evaluating them at σ ′ = 0, Bµ = �µ
α

pβ Lβ α (0)
p

, and

Cµ = �µ
α Lα(0); so ϕµ = tan−1 (Bµ/Cµ). Also, pα Lα is a constant of the motion.

Hence

Lµ(σ ′) = pµ

(
pα Lα

p2

)
+ [(Bµ)2 + (Cµ)2]1/2 cos (pσ ′ + ϕµ). (15)

Integrating Eq. (12b),

xµ(σ ′) = pµ

m0c

(
pα Lα

p2

)
σ ′ + [(Bµ)2 + (Cµ)2]1/2

p m0c
sin (p σ ′ + ϕµ) (16)

up to a constant. There are two interesting cases.
Case 1: pα Lα = 0. Then xµ(σ ′) describes an ellipse. As illustrated in Fig. 1,

the two sides of the ellipse represent counter-streaming currents (Cf. (Feynman,
1949)) of charge and energy; so that, taken as a whole, it corresponds to a zero
energy, neutral entity, a classical “vacuum fluctuation.”

Case 2: pα Lα �= 0. The motion is the elliptical motion of Case 1, on which
a constant drift is superimposed. The orbit is a trochoid; cf. Fig. 2. Due to the

"birth"

"death

"positron"

"electron"

(a) Fig. 1 (b) Fig. 2
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particle’s corkscrewing back into the past (or back into the future), the function
⇀x (t) may be multi-valued, so the position of the particle is not a well-defined
concept. This is the primitive, classical reason for the general breakdown of the
probability interpretation of relativistic wave equations. By continuity of the orbit,
the number of different ⇀x (t) corresponding to given t is odd for almost all
t , ensuring charge conservation. The orbit would be interpreted by an external
observer as that of a particle of unit charge, with a multipole structure.

The notion of a particle corkscrewing back into the past, as it moves generally
into the future, may at first sight appear to contradict Lorentz invariance. This
seeming contradiction is dispelled by recalling the separate roles played by the
classical evolution operator U (σ ′) = exp(−σ ′ ad I ′), ad I ′ ≡ [I ′, ]P.B., and the
dynamical invariance group. The former, applied to a set of initial conditions,
generates a trajectory. The latter, applied to a trajectory, yields another trajectory
that is a solution of the dynamics. Thus the dynamical invariance group acts
as a permutation group on the set of initial conditions, and it is only rarely
that a dynamical trajectory is the result of a one-parameter subgroup of such
permutations. This is illustrated by the Kepler problem, which has 0(3; R) as a
constant of the motion, yet admits elliptical trajectories.

2.6. Constants of the Motion

The phase space has twenty-eight dimensions, so there are twenty-seven
constants of the motion.

Six of these are given by the vectors Bµ and Cµ of Eq. (14). These two
four-vectors constitute only six independent quantities, since they are each per-
pendicular to pµ.

A seventh is the invariant pα Lα .
Ten more are provided by a canonical realization of ilg, the Lie algebra of

ILG:

Pµ = pµ (17a)

Hµν = x[µ pν ] + Lµν (17b)

The remaining ten constants of the motion are the quantities Rab, the generators of
right translation. Their Poisson brackets with the xµ and pµ vanish trivially, while
their brackets with the Lab vanish by the associative law of group multiplication.

In addition to these continuous symmetries, the dynamical generator is
invariant under certain discrete operations. In preparation for this, consider a
one-dimensional dynamical system with canonical coordinates x and p. Let � be
the operation that reflects x. Then �x = −x, �x2 = x2, �x3 = −x3, . . .; and
�p = −p, �p2 = p2, �p3 = −p3, . . . . These equations are consequences of
the classical commutation relations �x = −x� and �p = −p�.
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Passing now to the bundle, we introduce five involutions �a , with �a =
gab �b. �a is that operation on the bundle that is associated with reflection of
the coordinate xa . In particular, it reverses the ath axis of the fiducial frame. The
classical commutation relations now become �a xb = (−)g

ab

xb �a and �a pb =
(−)δ

a
b pb �a . Acting on the orbital generators J bc ≡ X[b pc], these imply �a J bc =

(−)g
ab+gac

J bc �a . By cogredience, �a Lbc = (−)g
ab+gac

Lbc �a . In particular, �5

anti-commutes with the four L5µ, and is the only reflection to do so.
The five reflections �a are somewhat redundant, for reflection of xµ is

equivalent to performing a π rotation in the 5µ plane, and then reversing the fifth
axis. I.e., �µ = �5 exp π ad(J 5µ + L5µ).

One then checks that the dynamical generator I ′ is invariant under the four
reflections �µ, while under �5,

[
L5µ pµ − Lab Lab

2R
− R

2
(m0c)2

]
→

[
−L5µ pµ − Lab Lab

2R
− R

2
(m0c)2

]
.

2.7. Interactions

The simplest interactions are those involving external fields, and of these the
electromagnetic field is of greatest importance. Denoting the free Lagrangian by
L0 the corresponding action is

S =
∫

dσ L0 + e

c

∫
dσ ẋµ Aµ (18)

which is gauge invariant and homogeneous of degree one. As in Section 4, the
canonical momenta derived from this action are not all independent, being subject
to the constraint Lµ(pµ − e

c
Aµ) − Lab Lab

2R
− R

2 (m0c)2 = 0. Thus the inclusion of
the electromagnetic field is accounted for by the transition

I (x, ρ, q, r) → I
(
x, p − e

c
A, q, r

)
≡ I (e).

One notes from Eq. (18) that, on introduction of the electromagnetic field,
the former total invariance of the theory under reparametrization is reduced to
invariance under sense-preserving reparametrizations. Indeed, if σ → −σ ,

S → −
∫

dσ L0 + e

c

∫
dσ ẋµ Aµ,

in which the sign of the charge has been effectively reversed. (This same effect
is induced by changing to the negative branch of the square root in the free
Lagrangian.)
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In the Hamiltonian formulation, the reversal σ → −σ is equivalent to revers-
ing the fundamental Poisson bracket relations:

[xµ, pν]P.B. = δµ
ν → [pν, x

µ]P.B. = δµ
ν , and

[qab, rcd ]P.B. = δab
cd → [rcd , q

ab]P.B. = δab
cd .

This reversal is induced by the anti-canonical transformation

C0 :
xµ → xµ qab → qab

pµ → −pµ rab → −rab
(19)

Since the Lab are linear in the r’s, C0L
ab = −Lab, which induces C0 I (e) = I (−e).

Let now C±
1 be any two canonical transformations preserving the forms

of I (±e), respectively. Then the composite anti-canonical transformation C ≡
C−

1 C0 C+
1 qualifies for the title, “charge conjugation,” since C applied to a solution

of the I (e) dynamics yields a solution of the I (−e) dynamics. Its characteristic
feature is that a negative energy electron, traveling backward into the past, is
converted into a positive energy positron, going forward into the future [It is an
interesting question, to what extent the involutive automorphisms of the quantum
theory are mirrored in the symmetries known to exist on the group. For the
geometry of Lie groups and their coset spaces see (Lechnerowicz, 1958; Helgason,
1962)].

The presence of an electromagnetic field produces an interesting effect on the
motion of a formerly free particle. It was seen in Section 5 that the projection of
the trajectory onto the base space was trochoidal, being built up of oscillations and
translations. The oscillations were governed by an isotropic frequency p. Intro-
ducing an electromagnetic field destroys this isotropy, so that the oscillatory part
of the motion becomes, for weak fields, a generally incommensurable Lissajous
figure.

The study of the interacting dynamics of particles and the electromagnetic
field may be based on the action

S =
∑

i

∫
dσi L0(i) +

∑
i

ei

c

∫
dσi ẋµ(i) Aµ − 1

4

∫
d4 x A[µ,ν] A[µ,ν] (20)

This classical theory, which may perhaps be considered the antecedent of quantum
electrodynamics, is already of enormous complexity, and will not be further treated
here.

There is a peculiarity implicit in Eq. (20) that seems to be characteristic
of relativistic systems. This peculiarity may be illustrated by the following two
examples.

The first example consists of two free particles. The action is S =∫
dσ

1 L0(1) + ∫
dσ2 L0(2). Computing the canonical momenta, one finds there are

now two constraints: I (1) = 0 and I (2) = 0. Alternatively, E1 = 0 and E2 = 0,
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where E1 and E2 are the elementary symmetric polynomials in the I ’s. This feature
extends to a many-particle system, there being as many constraints as particles.

Even on introducing particle-particle interactions, this feature seems to per-
sist, as the next example shows. Consider two particles interacting with the elec-
tromagnetic field according to Eq. (20). It is known (Wheeler and Feynman, 1949)
that, as far as a designated subset of particles is concerned, the electromagnetic
field may plausibly be eliminated in favor of an induced action at a distance
between these particles. This induced theory is given by the Fokker action

S =
∫

dσ1 L0(1) +
∫

dσ2 L0(2) + e1 e2

c2

×
∫

dσ1 dσ2 δ((x(1) − x(2))2)ẋµ(1) ẋµ(2) (21)

Computing the canonical momenta leads to the two non-local constraints

I

(
x(1), pµ(1) − e1 e2

c2

∫
dσ2 δ((x(1) − x(2))2)ẋµ(2), q(1), r(1)

)
= 0

(22)

I

(
x(2), pµ(2) − e1 e2

c2

∫
dσ1 δ((x(1) − x(2))2)ẋµ(1), q(2), r(2)

)
= 0

in which the velocities have not yet been eliminated. It is conjectured that the
resulting motion may be referred to a single invariant parameter, and that evolu-
tion with respect to this parameter is governed by two invariant generators [The
analogous problem of finding the single covariant generator for spinless action-
at-a-distance theory has been solved by Kerner (1962)], of a form derived in a
related context by Schwinger (1951).

If it is true that relativistic many-body systems will generally lead to multiple
constraints, it would appear that the correct quantum treatment of interactions is
far more complex than has been imagined. This may be inferred from the fol-
lowing partial summary of a procedure, due to Dirac 1964, for handling multiple
constraints.

Suppose one were to start with a Lagrangian and attempt to turn the canonical
crank. This is possible only if the equations defining the canonical momenta are
solvable for the velocities. If this inversion is not possible, it must be that there
are relations between the coordinates and momenta, called primary constraints.
(E.g., in Section 4 of this paper there was one primary constraint, I = 0.) Let there
be j primary constraints: I1 = 0, . . . , Ij = 0. Then, by Hamilton’s principle, the
motion possesses the generator G = H + λ1 I1 + · · · + λj Ij involving a non-
unique Hamiltonian and j Lagrange multipliers. (In our example H vanished,
since the Lagrangian was homogeneous of degree one, so G = λI .) One must
require that the vanishing of the constraints be preserved by the dynamics. This
is a compatibility condition, and in general requires the vanishing of further
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expressions: Ij+1 = 0, . . . , Ik = 0; which, in turn, must be compatible with the
dynamics. In this way, the scheme is prolonged until one reaches a full constraints
ideal: I1 = 0, . . . , I� = 0. By construction, this ideal exhausts the requirements
imposed by the dynamics.

On passing to the quantization of the system, these constraints become sub-
sidiary conditions to be satisfied by the state ray: 〈ψ |I1 = 0, . . . , 〈ψ |I� = 0.
Consider two of these equations, say 〈ψ |I1 = 0 and 〈ψ |I2 = 0. Then certainly
〈ψ |I1 I2 = 0 and 〈ψ |I2 I1 = 0; hence 〈ψ |[I1, I2] = 0. In general, the commutator
of two constraints does not lie in the constraint ideal, so 〈ψ |[I1, I2] = 0 is a new
and independent condition. But, by construction, the ideal was the full expression
of the restrictions imposed by the dynamics. Thus one must group together those
constraints whose commutators with the ideal lead back into the ideal, and those
which do not.

These two pieces constitute, respectively, the first class and second class parts
of the ideal. In order to avoid the above contradictions, the second class part of
the ideal must effectively be eliminated. This is done by performing a contact
transformation, where possible, or through the use of Dirac brackets.

Let us apply this formalism to the case of n free particles. We assume, as
in the theory of this paper, that the Hamiltonian vanishes, and that there are n

constraints, one for each particle. The wave function for this n body system then
satisfies the Schrödinger equations 〈ψ |I1 = 0, . . . , 〈ψ |In = 0. Since the particles
are uncoupled, the constraints have no variables in common. Hence the full con-
straint ideal is first class. (It is interesting to note that the constraints permute
among themselves under the action of the symmetric group. Then if 〈ψ | is taken
to be purely symmetric or antisymmetric, or a linear combination of these sym-
metry types, 〈ψ | need only be annihilated by any one constraint in order to be
annihilated by them all.)

When one passes to interacting particles, the constraints will have vari-
ables in common. One may then anticipate the possible occurrence of second
class constraints, necessitating the special procedures of Dirac’s formalism. In
view of the difficulties that have inhibited the successful treatment of interac-
tions in quantum field theory, it may well be that this complication is a blessing
in disguise.

Lastly, we consider point interactions between two particles. We may write
the five tensors (1, ẋµ,W5µ ab q̇ab,Wµνab q̇ab, ε5µνστ Wστ

ab q̇ab), one set for each
of the two particles, and construct invariants whose forms begin to mimic the
SVTAP interactions of quantum field theory. Then, presumably, these invariants
would appear in an interaction Lagrangian preceded by a function which pulses
on contact of the particles:

LINT =
∫ ∫

dσ1dσ2 δ (x1(σ1), x2(σ2)) × an invariant.
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However, it is not possible to do this in a Lorentz-invariant way. For contact
is associated with the apex of the light cone, and this can only be singled
out by a four-dimensional δ function: δ(4) (x1, x2) = δ(x0

1 − x0
2 ) δ(x1

1 − x1
2 ) δ(x2

1 −
x2

2 ) δ(x3
1 − x3

2 ). The appearance of such a function is meaningless in the resulting
Euler-Lagrange equations, which are ordinary differential equations in the inde-
pendent variables σ1 and σ2. To secure a meaningful expression (even in the sense
of generalized functions), requires a one-dimensional δ function, whose argument,
to secure Lorentz invariance, is invariant. But the only invariant that may be formed
from x1 and x2 is (x1 − x2)2, which singles out the entire light cone, not just its
apex. Thus, within the context of a classical Lorentz-invariant theory, one con-
cludes that it is impossible to formulate point interactions. Physically, this is not
surprising: one should expect particles to interact not when their base points coin-
cide (a contingency of measure zero), but when their frames bang into each other.

3. QUANTUM THEORY

3.1. Quantization

Quantization is achieved by promoting the dynamical variables to operators
(e.g., xµ → x̂µ), acting on an initially unspecified Hilbert space. The operators are
defined by their commutation relations, obtained from the fundamental Poisson
bracket relations by the replacement

[xµ, pν]P.B. = δµ
ν −→ [x̂µ, p̂ν] = ih δµ

ν

(23)
[qab, rcd ]P.B. = δab

cd −→ [q̂ab, r̂cd ] = ih δab
cd

The form I now becomes a quantum operator via I (x, p, q, r) → Î ≡
I (x̂, p̂, q̂, r̂). One then introduces an abstract state 〈ψ |. The classical constraint
I = 0 passes over to a condition on this state, by writing the left Schrödinger
equation 〈ψ |Î = 0:

〈ψ |
(

L̂µ p̂µ − L̂ab L̂ab

2R
− R

2
(m0c)2

)
= 0. (24)

3.2. Reduction of Representations

In determining the states, one may proceed by the method of Schrödinger.
Realize the commutation relations of Eq. (23) by x̂ → x, p̂ → h

i
∂
∂x

, q̂ → q,
r̂ → h

i
∂
∂q

. Then expand the fiber dependence of the left state 〈ψ | in terms of those
harmonics on the frame manifold that are the substrata of the finite dimensional,
non-unitary representations of 0(3, 2; R). The “boundary condition” that selects
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these harmonics is, apparently, the demand that the irreducible representations of
0(3, 2; R) be real, rather than Hermitian.

Proceeding in this way, or abstractly from the commutation relations, the
Schrödinger equation breaks up into the direct sum of irreducible equations. These
are the Dirac, Klein-Gordon, Maxwell-Proca, and higher spin equations (Corson,
1953; Schweber, 1961; Rose, 1961). For this reduction, we refer to the paper of
Bhabha (Klein, 1936; Bhabha, 1945), who discusses the structurally similar case
of the representations of 0(4, 1; R).

The left states 〈ψ | are labelled by the eigenvalues of a maximal set of
commuting constants of the motion. There are thirteen such operators.

One is given by L̂α p̂α .
Six are derived (Wigner, 1939; Bargmann and Wigner, 1948) from ilg:

p̂µ, Ŵ 2/p̂ 2, and Ŵ0; where Ŵµ ≡ 1
2ε5µνστ Ĥ νσ p̂τ .

The remaining six are obtained from the right translations:

⇀̂

S2 ≡ 1

2
δ50ab

50cd R̂ab R̂cd ; Ŝ3 ≡ R12;
⇀̂

S2 −
⇀̂

K2 ≡ 1

2
δ5ab

5cd R̂ab R̂cd ;
⇀̂

S · ⇀̂

K

≡ 1

2
∈5abcd R̂ab R̂cd ;

and the Casimir operators Ĉ1 ≡ R̂ab R̂ab, and Ĉ2 ≡ δabcd
efgh R̂ab R̂cd R̂ef R̂gh.

If the quantum number derived from L̂α p̂α vanishes, there is a certain degen-
eracy. It was seen in Section 6 that the form I was invariant under �5 in precisely
this case. One may then classify the states in terms of their behavior under reflec-
tion of the fifth axis. The states that are odd under this involution then effectively
satisfy the equation of Weyl (Corson, 1953; Schweber, 1961; Rose, 1961).

3.3. Expectation Values

It has seemed that calculations involving average values must invoke quan-
tities pertaining to the external observer. We assume that, for a non-rotating ob-
server, these quantities are the four-vector Pµ, describing the progress of the
external macroscopic observer through space-time. Thus, for an observer of mass
M at rest, Pµ = (Mc, 0, 0, 0).

It is further assumed that the participation of the external observer is effected
by the introduction of a metric operator N̂ given by

N̂ = L̂α Pα

h
√
Pµ Pµ

. (25)

Also associated with the external observer is the pseudo-scalar 3-volume dV =
ε5µνστ

Pµ√
Pα Pα

dxν dxσ dxτ . The expection value of an operator Ô, in the state
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〈ψ |, is given by the formula

〈Ô〉ψ =
∫

V

dV 〈ψ |Ô N̂ |ψ〉 (26)

where the bracket denotes an averaging over the internal manifold.
As an example, consider an observer at rest measuring the electric current

four-vector ĵ µ (the promotion of the classical jµ = e
c

dxµ

dσ
= e

c
Lµ), in a state of

spin 1/2:

〈ĵ µ〉 1
2

=
∫

V

dV

〈
1

2

∣∣∣∣∣
e

c
L̂µ L̂α Pα

h
√
Pβ Pβ

∣∣∣∣∣
1

2

〉

=
∫

t=const
d3x

e

h c
ψ γ µ γ 0 ψ†.

3.4. Mass Formula

The mass of a state 〈ψ | is the expectation value of the operator m̂ =
± 1

c
(p̂µp̂µ)1/2. This invariant is most easily evaluated in the “rest” state of the

particle, defined by the vanishing of its three spatial momenta. In this state,
m̂ = ±p̂0. Solving Eq. (24) for p̂0 yields

〈m̂〉ψ = ±1

c

∫
V

dV

〈
ψ

∣∣∣∣∣
1

L̂0

(
R

2
(m0c)2 + L̂ab L̂ab

2R

)
N̂

∣∣∣∣∣ ψ
〉

. (27)

For an observer at rest,

〈m̂〉ψ = ± 1

h c

∫
t=const

d3x

〈
ψ

∣∣∣∣∣
R

2
(m0c)2 + L̂ab L̂ab

2R

∣∣∣∣∣ ψ
〉

. (28)

leading to a rotational spectrum which may bear some relation to the “resonances”
currently being discovered.

Such a formula cannot lead to the baffling mass spectrum presented by
the elementary particles. It is true that the above mass formula would undergo
modification on introducing interactions. It is felt, however, that the gross features
of the elementary particle spectrum are attributable to an internal binding far
stronger than the splitting provided by external interactions. It is useful to recall
that in hydrogen, the energy is almost wholly dependent on the radial quantum
number, associated with a coordinate untouched by 0(3; R), the a priori system
group of the problem. In the context of the present theory, there are sixteen such
variables: x5; and the fifteen dimensions of GL(5; R)/0(3, 2; R), corresponding
to those elastic deformations in five-space that have not been considered.
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4. DISCUSSION

The theory presented above was based on a simple, phenomenological
Lagrangian, whose chief structural feature was the coupling of the 5µ components
of the Darboux-Cartan matrix to the space-time velocities. This was made possible
by the fact that HLG is a reductive subgroup of 0(3, 2; R). We have stressed the
interpretation of the fiber as a manifold of orientation-deformations. This leads
one to view the theory as describing the propagation of localized strains. I.e., in
some sense, one may be studying the particle-like excitations of a still deeper
field, which, for the sake of historical continuity, we shall call the ether. It is
worth noting that the matrices of 0(3, 2; R), or rather its proper component, are
unimodular; precisely what would be expected in a first, approximate description
of an extremely stiff “luminiferous ether.”

The coupling of a fifth axis quantity to space-time velocities is reminiscent of
the treatment of the vector potential in the Kaluza-Klein (For a critical discussion
and references, see Pauli, 1958) five dimensional formulation of general relativity.
There also, as here, the fifth coordinate is ignorable in the Lagrangian, but plays an
essential kinematic role. The esthetic appeal of this formulation, and others, would
tend to suggest that Einstein’s great discovery is not a closed and finished structure;
but that, as with all things of depth, it is susceptible of fruitful generalization. It
would be in the spirit of the present theory to seek an extension of general relativity
from the base space to the bundle. In this connection, it is notable that the Lie
manifolds satisfy Einstein’s source-free equation.

In conclusion, the idea that motivated the present work may be formalized
as the “Family Principle” concerning linear partial differential equations with
constant coefficients. On the basis of the preceding, one may believe that linear
partial differential equations with constant coefficients properly come in fami-
lies, rather than singly, a family constituting of well-defined series of irreducible
representations of a common invariant group; and that this entire family may
be regarded as the Schrödinger field associated with one underlying system of
ordinary differential equations. This might apply to equations with variable coef-
ficients, provided one were able to attribute the variability to curvature of the base
space.

An example is afforded by the Cauchy-Riemann equations, relating the real
and imaginary parts of an analytic function. The base space is the Minkowski plane
(the imaginary axis corresponding to time), the group and fiber 0(1, 2; R), the
dynamical invariance group the inhomogeneous Lorentz group of the plane. The
Lagrangian is that of Eq. (8), with a, b = 3, 0, 1 and µ, ν = 0, 1. The Schrödinger
equation is then 〈ψ |(L̂3µ p̂µ − L̂ab L̂ab

2R
− R

2 (m0c)2) = 0. We examine the spin 1/2
case. Choosing a real representation of the spin 1/2 matrices, with L31 diagonal
(corresponding to choice of x1 as the real axis), and letting R = 1

2
h

m0c
, yields in
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conventional notation,([
1 0
0 −1

]
∂

∂x
+

[
0 1
1 0

]
∂

∂y

) [
µ

ν

]
= 0,

the Cauchy-Riemann equations.
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